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Introduction 
 

The global petrochemical based plastic 

production has been increased from 1.5 

million tons in 1950 to 299 million tons in 

2013. Rapid exploitation of these synthetic, 

non-biodegradable plastics has generated 

large amounts toxic waste as well as a setback 

on their management (Yang et al., 2015). 

Thus, it is the need of the hour to replace 

these synthetic plastics by an alternate 

biopolymer. Polyhydroxyalkanoates (PHAs) 

are the most fascinating group of biopolymer, 

synthesized by a wide range of Gram positive 

and Gram negative bacteria as carbon and 

energy storage inclusion in their cytosol 

(Sudesh et al., 2000). Among different 

 

 

 

 

 

 

 
 

genera, Bacillus species are ideal by 

numerous industries and academia, as a 

matter of fact; they are genetically stable, fast 

growing, consume reasonably priced carbon 

sources and produce endotoxin free PHAs as 

evaluated against Gram negative bacteria 

(Mohapatra et al., 2015; 2017). In general, 

PHAs synthesis followed by accumulation is 

one of the responses towards stress 

experienced by bacteria residing at different 

ecological niches (Koller et al., 2011). The 

molecular weight of PHAs varies between 

200,000 to 2000,000 dalton depending on 

bacterial strain, fermentation conditions and 

substrate used in the bioprocess technology 
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Polyhydroxyalkanoates (PHAs) are the most fascinating group of 

biopolymer emerges to be the potential candidate for substitute of synthetic 

plastics. However, high cost of both upstream and downstream processing 

has limited their successful commercialization. Among these two processes, 

recovery methodology of PHAs significantly affects the overall production 

economics. Thus, various recovery technologies including chemical 

digestion, solvent extraction, enzymatic treatment, supercritical fluid 

disruption, mechanical disruption, flotation techniques, aqueous two-phase 

system and use of gamma irradiation have been used in different industry 

and academia. In this review, we summarized the quantity and quality 

analysis of PHAs produced, particularly by Bacillus species with special 

reference to downstream processing, which may lead to get high purity and 

maximum recovery at a low production cost. 
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(Koller et al., 2013). These biopolymer mimic 

the properties petrochemical based plastics 

and recyclable to CO2 and H2O in the natural 

condition (Khanna and Srivastava, 2005). 

Hence, PHAs can be used for preparation of 

plastics materials, medical implants, drug 

delivery carriers, nutritional supplements, 

drugs and fine chemicals (Maity et al., 2017).  

 

Nevertheless, replacement of conventional 

plastics is inadequate due to their elevated 

production cost, which holds back its 

unbeaten market penetration (Waltz, 2008). 

As a result, more efforts are needed for 

making the bioprocess technology 

economically feasible.  

 

In this regard, maximum attention has been 

given towards upstream processing (Maity et 

al., 2017) than downstream processing and 

quality analysis of PHAs.  

 

Earlier studies also recommended that, cost of 

production, quantity, molecular weight and 

purity of PHAs extracted from bacteria 

depends on various physical, chemical and 

biological methods used in downstream 

processing (Koller et al., 2013; Mohapatra et 

al., 2015; Kunasundari and Sudesh, 2011; 

Dibyashree and Shamala, 2010). In this 

review, we summarized the quantity and 

quality analysis of PHAs produced by 

Bacillus species with special reference to 

downstream processing. 

 

Quality analysis of PHAs extracted from 

Bacillus species 

 

Cost affordable PHB production and 

pharmacological purity is mainly dependent 

on the microbial strain used and the extraction 

method employed to separate the biopolymer 

(Valappil et al., 2007). Majority of the 

separation processes including sodium 

hypochlorite multi-solvent, di-solvent and 

mono-solvent, chloroform-methanol, sodium 

hypochlorite aqueous two phase system and 

chloroform have been used for the recovery of 

PHB from Bacillus species. The data analysis 

(Table 1) suggested that, higher amount of 

PHB recovery has been achieved in the 

sodium hypochlorite multi-solvent extraction 

method. More specifically, 5.29g/l and 5.30g/l 

of PHB was extracted from Bacillus subtilis 

NG220 (Singh et al., 2013) and Bacillus 

subtilis (Gomma, 2014) by sodium 

hypochlorite multi-solvent extraction method 

respectively. In addition, Bacillus cereus SPV 

was produced 3.0g/l of PHB with 95% purity 

by the same process (Valappil et al., 2007). 

 

 

 
 

Table.1 Quantitative and qualitative analysis of PHAs produced by Bacillus species 

 

Bacterial strain Downstream process 
Carbon 

source 

Quantity 

of PHAs 

(g/l) 

Purity 

of 

PHAs 

Melting 

Point 

(Tm) 

Type of 

PHAs 
Reference 

Bacillus subtilis 

(KP172548) 

Sodium hypochlorite 

and Multi-solvent 

Fish solid 

waste 
1.620 - 120oC PHB 

Mohapatra et al., 

2017 

Lysinibacillus sp. 

3HHX 

Sodium hypochlorite 

and Multi-solvent 
Glucose 4.006 - 112oC 

P(3HB-co-

3HDD-co-

3HTD) 

Mohapatra et at., 

2016 

Bacillus subtilis 

(KP172548) 

Sodium hypochlorite 

and Multi-solvent 
Glucose 3.090 - 99oC PHB 

Mohapatra et al., 

2015 

Bacillus thuringiensis 

RKD-12 

Sodium hypochlorite 

and Multi-solvent 
Glucose 1.110 - - PHB 

Mohapatra et al., 

2015 

Bacillus thuringiensis 

RKD-12 

Sodium hypochlorite 

and Di-solvent 
Glucose 1.080 - - PHB 

Mohapatra et al., 

2015 

Bacillus thuringiensis Sodium hypochlorite Glucose 0.450 - - PHB Mohapatra et al., 
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RKD-12 and Mono-solvent 2015 

Bacillus sp. P3 
Sodium hypochlorite 

and Multi-solvent 
Glucose 0.948 - - PHB 

Mohapatra et al., 

2015 

Geobacillus sp. 

AY946034 

Sonication and Multi-

solvent 
Glucose 1.30 - 168.8oC PHB 

Giedraityte and 

Kalediene, 2015 

Bacillus OU73T 
Multi-solvent 

extraction 
Rice bran 57.76% - - 

PHB-co-

HV 

Nagamani et al., 

2015 

Bacillus sp. KSN5 
Sodium hypochlorite 

and Chloroform 
Glucose 95% - - PHAs 

Kalaivani and 

Sukumaran,2015 

Bacillus 

thuringienesis 

KSADL127 

Chloroform Glucose 0.13 - 283oC PHB Alarfaj et al., 2015 

Bacillus subtilis 
Sodium hypochlorite 

and Chloroform 

Cane 

molasses 
5.30 

 

- 
- PHB Gomma, 2014 

Bacillus licheniformis 
Sodium hypochlorite 

and Di-solvent 
Glucose 0.437 - - PHB Dash et al., 2014 

Bacillus subtilis G1S1 
Sodium hypochlorite 

and Multi-solvent 
Glucose 0.20 - - PHB Shah, 2014 

Bacillus 

thuringienesis 

KJ206079 

Sodium hypochlorite 

and Multi-solvent 

Cane 

molasses 
4.10 - - PHAs 

Desouky et al., 

2014 

Bacillus sp. S1 2013b 
Sodium hypochlorite 

and Multi-solvent 
Glucose 4.00 - - PHB 

Mohapatra et al., 

2014 

Bacillus megaterium 
Sodium hypochlorite 

and Multi-solvent 
Glucose 1.60 - - PHAs 

Israni and 

Shivakumar, 2013 

Bacillus megaterium 

uyuniS29 

Chloroform and 

Methanol 
Glucose 2.35 - 161oC PHB 

Contreras et al., 

2013 

Bacillus subtilis 

NG220 

Sodium hypochlorite 

and Multi-solvent 
Maltose 5.29 - 

132.54o

C 
PHB Singh et al., 2013 

Bacillus flexus 
Sodium hypochlorite 

and Chloroform 
Sucrose 1.00 - - PHB 

Divyashree and 

Shamala, 2009 

Bacillus flexus 

Sodium hypochlorite 

and Aqueous two 

phase system 

Sucrose 

 

1.30 

 

80% - 
PHB-co-

HV 

Divyashree et al., 

2009 

Bacillus sphaericus 

NCIM5149 

Sodium hypochlorite 

and Multi-solvent 

Agro-

industrial 

residues 

0.69 - - PHB 
Ramadas et al., 

2009 

Bacillus cereus SPV 
Sodium hypochlorite 

and Multi-solvent 
Glucose 3.0 95% - PHB 

Valappil et al., 

2007 

 

 

Though, sodium hypochlorite extraction 

method leading to degradation of PHB as well 

as reduction of the polymer chain length, 

however the level of degradation varies from 

microbes to microbes. Thus, this method is 

widely used for extraction of PHB as it results 

in less polymer degradation (Valappil et al., 

2007). Moreover, the different extraction 

techniques analyzed in this review were found 

to have an effect on the thermal and structural 

properties of the PHB extracted from Bacillus 

species. 

 

Different downstream processing strategies 

have been conducted for recovery of PHAs 

from Bacillus species depict that, sodium 

hypochlorite digestion followed by solvent 

extraction method can lead to high purity and 

endotoxin free PHAs as compared to other 

method. Although, this method is not cost 

affordable and environmental friendly, 

however improvement of this downstream 

processing method can lead to an economic 

recovery of PHAs, with a high purity for its 

substantial biomedical applications. 
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